34 research outputs found

    Diminishing benefits of urban living for children and adolescents’ growth and development

    Get PDF
    AbstractOptimal growth and development in childhood and adolescence is crucial for lifelong health and well-being1–6. Here we used data from 2,325 population-based studies, with measurements of height and weight from 71 million participants, to report the height and body-mass index (BMI) of children and adolescents aged 5–19 years on the basis of rural and urban place of residence in 200 countries and territories from 1990 to 2020. In 1990, children and adolescents residing in cities were taller than their rural counterparts in all but a few high-income countries. By 2020, the urban height advantage became smaller in most countries, and in many high-income western countries it reversed into a small urban-based disadvantage. The exception was for boys in most countries in sub-Saharan Africa and in some countries in Oceania, south Asia and the region of central Asia, Middle East and north Africa. In these countries, successive cohorts of boys from rural places either did not gain height or possibly became shorter, and hence fell further behind their urban peers. The difference between the age-standardized mean BMI of children in urban and rural areas was &lt;1.1 kg m–2 in the vast majority of countries. Within this small range, BMI increased slightly more in cities than in rural areas, except in south Asia, sub-Saharan Africa and some countries in central and eastern Europe. Our results show that in much of the world, the growth and developmental advantages of living in cities have diminished in the twenty-first century, whereas in much of sub-Saharan Africa they have amplified.</jats:p

    Agent-based decentralised coordination for sensor networks using the max-sum algorithm

    No full text
    In this paper, we consider the generic problem of how a network of physically distributed, computationally constrained devices can make coordinated decisions to maximise the effectiveness of the whole sensor network. In particular, we propose a new agent-based representation of the problem, based on the factor graph, and use state-of-the-art DCOP heuristics (i.e., DSA and the max-sum algorithm) to generate sub-optimal solutions. In more detail, we formally model a specific real-world problem where energy-harvesting sensors are deployed within an urban environment to detect vehicle movements. The sensors coordinate their sense/sleep schedules, maintaining energy neutral operation while maximising vehicle detection probability. We theoretically analyse the performance of the sensor network for various coordination strategies and show that by appropriately coordinating their schedules the sensors can achieve significantly improved system-wide performance, detecting up to 50% of the events that a randomly coordinated network fails to detect. Finally, we deploy our coordination approach in a realistic simulation of our wide area surveillance problem, comparing its performance to a number of benchmarking coordination strategies. In this setting, our approach achieves up to a 57% reduction in the number of missed vehicles (compared to an uncoordinated network). This performance is close to that achieved by a benchmark centralised algorithm (simulated annealing) and to a continuously powered network (which is an unreachable upper bound for any coordination approach)

    Dynamic k

    No full text
    corecore